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Human cognitive control is uniquely flexible and has been shown
to depend on prefrontal cortex (PFC). But exactly how the biolog-
ical mechanisms of the PFC support flexible cognitive control
remains a profound mystery. Existing theoretical models have
posited powerful task-specific PFC representations, but not how
these develop. We show how this can occur when a set of
PFC-specific neural mechanisms interact with breadth of experi-
ence to self organize abstract rule-like PFC representations that
support flexible generalization in novel tasks. The same model is
shown to apply to benchmark PFC tasks (Stroop and Wisconsin card
sorting), accurately simulating the behavior of neurologically in-
tact and frontally damaged people.

generalization � abstraction � adaptive gating

A fundamental human cognitive faculty is the capacity for
cognitive control: the ability to behave in accord with rules,

goals, or intentions, even when this runs counter to reflexive or
otherwise highly compelling competing responses (e.g., the ability
to keep typing rather than scratch a mosquito bite). A hallmark of
cognitive control in humans is its remarkable flexibility: we can
perform novel tasks with very little additional experience (e.g.,
playing a card game for the first time by observing the play or
hearing the rules described). This ability appears to depend on the
prefrontal cortex (PFC) (1–5) and in particular on abstract rule-like
representations localized to this brain area (6–8). However, this
capacity emerges only slowly over a protracted period through late
adolescence, closely tracking the development of the PFC (9–11).
At the psychological level, flexible cognitive control has been
modeled abstractly in terms of symbol processing computations that
support arbitrary variable binding (12). However, it remains unclear
whether or how such models correspond to the increasingly rich
body of knowledge about the neural mechanisms underlying cog-
nitive control and in particular the functioning of the PFC. At the
biological level, a number of neural models have proposed that
cognitive control relies on the active maintenance of abstract
rule-like representations in PFC that guide processing in posterior
cortex (13–17). However, none of these existing frameworks have
explained how such representations might develop, and why this
development should take so long; indeed, most models rely on
hand-coded representations designed explicitly for solving a specific
set of tasks. Thus, a major challenge to theories of the neural bases
of cognitive control remains unanswered: how it can be explained
in terms of self-organizing mechanisms that develop on their own,
over time, without recourse to unexplained sources of influence or
intelligence (i.e., a ‘‘homunculus’’) (18).

Here, we present a computational model that provides an
explanation for the development of cognitive flexibility. This model
shows how neurobiological mechanisms specific to the PFC result
in the self organization of abstract rule-like PFC representations
that support flexible cognitive control. These representations de-
velop through experience on a basic set of sensory-motor tasks via
synaptic learning mechanisms. Both the development of these
representations and the flexibility they support required a broad
range of experience across multiple tasks. Thus, this model de-

scribes a biologically based alternative to abstract symbol processing
models of cognitive flexibility that illustrates how cognitive flexi-
bility can arise from an interaction between nature (PFC-specific
neurobiological mechanisms) and nurture (breadth of experience).
Our model builds on extensive neurobiological and theoretical work
indicating that PFC exhibits the following properties (see support-
ing information, which is published on the PNAS web site, for
details of the implementation):

(i) Active maintenance of patterns of neural activity over time and
against interference from distracting inputs, so that currently
relevant information can be held in working memory (1–3).
Both recurrent excitatory connectivity that sustains active
patterns of PFC neural activity and intrinsic bistability of PFC
neurons have been shown to support active maintenance (19,
20), and both of these mechanisms are included in our model.

(ii) Adaptive updating of these PFC activity patterns by dynami-
cally switching between active maintenance and rapid updating
of new representations (16, 17, 21, 22). This updating function
is implemented by an adaptive gating mechanism based on the
circuits and physiology of the basal ganglia and the midbrain
dopaminergic ventral tegmental area (VTA), which project
extensively to the PFC (16, 17, 23, 24). This gating mechanism
leverages the close formal relationship between VTA dopa-
mine firing and reinforcement learning based on expected
rewards (25). Specifically, the gating system stabilizes and
destabilizes active maintenance in the PFC and is itself driven
by differences in expected and received rewards. When the
gating system receives an unexpected reward, the correspond-
ing dopamine spike stabilizes active representations in the PFC
by activating intrinsic maintenance currents; when it does not
get an expected reward, it destabilizes the PFC to allow a new
activation pattern to emerge. This allows PFC representations
to rapidly update to reflect changing task contingencies. We
have also explored the idea that the basal ganglia provide a
direct gating input to the PFC (23), which is trained by similar
dopamine-based mechanisms but can provide reliable gating in
the absence of dopamine signals and also a more selective
updating signal.

(iii) PFC modulation of processing in other cortical areas (e.g., in
posterior cortex) responsible for task execution (3, 13), sup-
ported by extensive interconnectivity with these other cortical
areas (2).

We present the results of two simulation experiments using the
model. The first shows that the model’s mechanisms are sufficient
to support the development of rule-like task representations, and
that these representations support generalization of task perfor-
mance to novel environments. The second shows that the model
accurately simulates detailed patterns of behavior from neurolog-
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ically intact and frontally damaged people on benchmark tasks of
cognitive control.

Methods
We tested a model implementing the three sets of PFC-specific
mechanisms described above (Fig. 1a), as well as versions of it
lacking these mechanisms by varying degree. These models were
trained either on two (Task Pairs condition) or four tasks (All
Tasks condition), to test the effects of restricted vs. broad
training experience, respectively. The tasks were designed to
simulate simple processing of multidimensional stimuli (e.g.,
varying along dimensions such as size, shape, color, etc.) and
active maintenance. Critically, we constructed these tasks so they
all shared a common requirement: only one stimulus dimension
was relevant at a given time. For example, one task involved
naming a stimulus feature value along a given dimension (e.g., if
the stimulus was a blue large circular object, and the relevant
dimension was shape, then the correct response was to activate
the ‘‘circle’’ output unit; Fig. 1b). Other tasks included matching
features of two stimuli (if they matched along the relevant
dimension, the correct output was the name of the shared
feature; otherwise, the ‘‘No Match’’ unit should be activated) or
comparing their relative ordinal values (i.e., output the name of
the larger�smaller feature within the relevant dimension).

Thus, knowing the relevant dimension was a critical rule in each
task, uniquely determining the mapping from stimulus to response.
Because all of the tasks shared this requirement, attention to a
single dimension, we predicted that during training, the PFC would
develop abstract representations of these dimensions (i.e., learn the
relevant set of rules), and that this would allow it to generalize its
performance to novel stimuli in each task. To allow the current rule
to be discovered solely by trial-and-error learning (even in networks
without a PFC, which adapted relatively slowly to task rule
changes), we kept the relevant dimension the same over blocks of
trials (a variety of strategies for blocking task and dimension
information were explored without substantial differences in re-

sults, as described in supporting information; the basic case was task
switching every block of 25 trials, with dimension switching after
two iterations through all of the tasks). These conditions were
designed to simulate simple forms of real-world learning experience
that humans encounter during development (e.g., in playing with
blocks, a sustained focus on the shapes of these objects is necessary
to construct desired structures). Furthermore, we also included the
ability to provide explicit task instructions to the models by means
of a dimension cue input, to provide as generous a test as possible
of models lacking the ability to maintain task-relevant information
internally (see supporting information for more details and effects
of parametric variations).

To enable generalization testing, the model saw only a subset of
the feature values along each dimension for a given task and a
relatively small fraction (�30%) of all possible stimuli (i.e., com-
binations of features across dimensions). A given training run
consisted of 100 epochs of 2,000 trials per epoch; it took the
networks only �10 epochs to achieve near-perfect performance on
the training items, but we measured crosstask generalization per-
formance every five epochs throughout the duration to find the best
generalization for each network, unconfounded by any differences
in architecture or in the raw amount of exposure to features across
different training scenarios. Generalization testing measured the
network’s ability to respond to stimuli it had not seen in that task.

We trained and tested different network configurations to test
the contribution made by constituent mechanisms to learning and
performance. All network configurations had the same total num-
ber of processing units, to control for the effects of overall com-
puting resources. The only differences among configurations were
the patterns of connectivity and the presence or absence of the
adaptive gating mechanism. The various configurations are de-
scribed in Fig. 3. These ranged from a simple feedforward network
with 145 hidden units (equaling the number of hidden plus PFC
units in the full PFC model) to the complete model, including full
recurrent connectivity within the PFC and an adaptive gating
mechanism. For all networks, we ran 10 different random initial

Fig. 1. Model and example stimuli. (a) The model with the complete PFC system. Stimuli are presented in two possible locations (left, right). Rows represent
different stimulus dimensions (e.g., color, size, shape, etc., labeled A–E for simplicity), and columns represent different features (red, orange green, and blue;
small, medium, etc., numbered 1–4). Other inputs include a task input indicating current task to perform (NF, name feature; MF, match feature; SF, smaller
feature; LF, larger feature), and, for the ‘‘instructed’’ condition (used to control for lack of maintenance in non-PFC networks), a cue to the currently relevant
dimension. Output responses are generated over the response layer, which has units for the different stimulus features, plus a ‘‘No’’ unit to signal nonmatch
in the matching task. The hidden layers represent posterior cortical pathways associated with different types of inputs (e.g., visual and verbal). The AG unit is
the adaptive gating unit, providing a temporal differences (TD) based dynamic gating signal to the PFC context layer. The weights into the AG unit learn via the
TD mechanism, whereas all other weights learn using the Leabra algorithm that combines standard Hebbian and error-driven learning mechanisms, together
with k-winners-take-all inhibitory competition within layers and point-neuron activation dynamics (26) (also see supporting information). (b) Example stimuli
and correct responses for one of the tasks (NF) across three trials where the current rule is to focus on the Shape dimension (the same rule was blocked over 200
trials to allow networks plenty of time to adapt to each rule). The corresponding input and target patterns for the network are shown below each trial, with
the unit meanings given by the legend in the lower left. The network must maintain the current dimension rule to perform correctly.
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networks to generate statistics, and error bars in Figs. 3 and 4 reflect
the standard error over these runs.

The model was implemented in the Leabra algorithm, which
includes error-driven and associative (Hebbian) learning mecha-
nisms, k-winners-take-all inhibitory competition within layers, and
point-neuron ion-channel-based neural dynamics with bidirectional
excitatory connectivity. Leabra integrates the most widely used
neural modeling principles developed by a variety of researchers
into one unified framework, which has been used to simulate �40
different cognitive models from perception and attention to learn-
ing, memory, language, and higher-level cognition (26), plus many
more published simulations in other papers. In keeping with the
goal of using the same set of mechanisms and parameters across a
wide range of models, default parameters and mechanisms were
used in this model. The details of these standard mechanisms and
the PFC-specific mechanisms in our model are described in ref. 24
and supporting information.

Results
Representations and Generalization. Our primary finding was that,
over the course of training on these tasks, the PFC layer in the full
model developed synaptic weights and associated patterns of ac-

tivity that encoded abstract rule-like representations of the relevant
stimulus dimensions (Fig. 2d). That is, each PFC unit came to
represent a single dimension and all features in that dimension.
More precisely, these representations collectively formed a basis set
of orthogonal vectors that spanned the space of task-relevant
stimuli, and that were aligned with the dimensions along which
features had to be distinguished for task performance. More
generally, we can characterize rule-like representations as encoding
and producing a common abstract pattern of behavior over a broad
class of specific situations. These representations were only partially
apparent in the configuration having a PFC but lacking an adaptive
gating mechanism (Fig. 2b), as well as the full model trained only
on task pairs (Fig. 2c), and were essentially absent from the model
entirely lacking a PFC (Fig. 2a). These models tended to memorize
specific combinations of stimulus features and responses rather
than develop abstract representations of feature dimensions that
could serve as more general rules. Additional principal components
analysis supported this visual interpretation of the weights, showing
that the non-PFC networks do not simply have a low-dimensional
‘‘rotated’’ representation of the dimensions (e.g., the posterior
cortex model had 8 eigenvalues �1 and a smooth continuum down
to a minimum of 0.4, which is still relatively large). As noted in

Fig. 2. Representations (synaptic weights) that developed in four different network configurations. (a) Posterior cortex only (no PFC) trained on all tasks. (b) PFC
without the adaptive gating mechanism (all tasks). (c) Full PFC trained only on task pairs (name feature and match feature in this case). (d) Full PFC (all tasks). Each image
shows the weights from the hidden units (a) or PFC (b–d) to the response layer. Larger squares correspond to units (all 30 in the PFC and a random and representative
subset of 30 from the 145 hidden units in the posterior model), and the smaller squares within designate the strength of the connection (lighter � stronger) from that
unit to each of the units in the response layer. Note that each row designates connections to response units representing features in the same stimulus dimension (as
illustrated in e and Fig. 1). It is evident, therefore, that each of the PFC units in the full model (d) represents a single dimension and, conversely, that each dimension
is represented by a distinct subset of PFC units. This pattern is less evident to almost entirely absent in the other network configurations (see text for additional analyses).
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Methods, the total number of training trials and stimulus inputs was
equated across simulation conditions, so that the increased breadth
of experience in the All Tasks condition was solely from exposure
to more task contexts. Furthermore, models were trained well
beyond convergence, so differences in overall learning rate are not
a factor.

The abstract rule-like representations that developed in the full
PFC model supported task performance by providing top-down
excitatory support for the relevant stimulus dimension in the rest of
the network. The adaptive gating system learned to update the PFC
layer activity when the relevant stimulus dimension (i.e., task rule)
changed (due to rapid error-based destabilization of PFC activa-
tions), and the PFC actively maintained this rule while it remained
in effect. In models without these active maintenance and updating
mechanisms, synaptic learning mechanisms shifted the network’s
processing to the relevant stimulus dimension, but these changes
were necessarily slower than the rapid shifts that can be achieved by
dynamic updating of activation states in PFC (26). This difference
accounts for the increased levels of perseveration observed with
PFC damage in the Wisconsin Card Sort Task (WCST) and other
tasks, as has been demonstrated in several existing models (14, 15,
24) and as we report for our model below.

We hypothesized that the abstract rule-like representations that
developed in the full PFC model should support more flexible
cognitive control in this model relative to the others. We tested this
idea by comparing the ability of each network to generalize its
performance across the different tasks. Each network was trained
on a subset of stimuli in each task and then tested on stimuli that
it had not previously seen in that task. We theorized that the
abstract dimensional representations in the PFC would be able to
guide processing for the task–novel test stimuli in a similar manner

as the trained stimuli. Indeed, only the Full PFC model exhibited
substantial generalization, achieving 85% accuracy (i.e., only one-
third as many errors as other networks) on stimuli for which it had
no prior same-task experience (Fig. 3a). However, this was the case
only for the All Tasks regimen; training on pairs of tasks resulted
in more than four times as many generalization errors. This
indicates that breadth of experience was critical for exploiting the
mechanisms present in the PFC, just as we had earlier observed in
the development of the abstract rule-like PFC representations.
Indeed, Fig. 3b shows that, as we hypothesized, the degree to which
different networks developed abstract dimensional representations
was strongly correlated with the network’s generalization perfor-
mance (r � 0.97).

There is a clear mechanistic explanation for why the combination
of rapid updating and sustained active maintenance of task rule
representations in the full PFC model (which depends on the
adaptive gating mechanism) was critical for the formation of
abstract rule-like representations during training. Within a block of
trials with the same relevant dimension, the specific features within
that dimension varied, but a constant PFC activity pattern was
maintained due to the gating mechanism. This caused these PFC
representations, which initially had random connections, to begin to
encode all of the varying features within a dimension, resulting in
an abstract dimensional representation. In contrast, other networks
tended to activate new representations for each new stimulus (as the
specific features changed) and thus were unable to form the
dimensional abstraction across features. Interestingly, the dimen-
sional alignment of PFC representations was greater for the All
Tasks than the Task Pairs condition. This is because the pressure to
use the same PFC representations across all tasks increased with the
number of tasks: with only two tasks, it was possible for the network

Fig. 3. Generalization and learning results. (a) Crosstask generalization results (% correct on task-novel stimuli) for the full PFC network and a variety of control
networks, with either only two tasks (Task Pairs) or all four tasks (All Tasks) used during training (n � 10 for each network, error bars are standard errors). Overall,
the full PFC model generalizes substantially better than the other models, and this interacts with the level of training such that performance on the All Tasks
condition is substantially better than the Task Pairs condition (with no differences in numbers of training trials or training stimuli). With one feature left out of
training for each of four dimensions, training represented only 31.6% (324) of the total possible stimulus inputs (1,024); the �85% generalization performance
on the remaining test items therefore represents good productive abilities. The other networks are: Posterior, a single large hidden unit layer between inputs
and response, a simple model of posterior cortex without any special active maintenance abilities; P � Rec, posterior � full recurrent connectivity among hidden
units, allows hidden layer to maintain information over time via attractor dynamics; P � Self, posterior � self-recurrent connections from hidden units to
themselves, allows individual units to maintain activations over time; SRN, simple recurrent network, with a context layer that is a copy of the hidden layer on
the prior step, a widely used form of temporal maintenance; SRN-PFC, an SRN context layer applied to the PFC layer in the full model (identical to the full PFC
model except for this difference), tests for role of separated hidden layers; NoGate, the full PFC model without the AG adaptive gating unit. (b) The correlation
of generalization performance with the extent to which the units distinctly and orthogonally encode stimulus dimensions for the networks shown in Fig. 2. This
was computed by comparing each unit’s pattern of weights to the set of five orthogonal, complete dimensional target patterns (i.e., the A dimension target
pattern has a 1 for each A feature, and 0s for the features in all other dimensions, etc.). A numeric value between 0 and 1, where 1 represents a completely
orthogonal and complete dimensional representation was computed for unit i as: di � maxk�wi�tk���k�wi�tk�; where tk is the dimensional target pattern k, and
wi is the weight vector for unit i, and �wi�tk� represents the normalized dot product of the two vectors (i.e., the cosine). This value was then averaged across all
units in the layer and then correlated with that network’s generalization performance. (c) Relative stability of PFC and hidden layer (posterior cortex) in the
model, as indexed by Euclidean distance between weight states at the end of subsequent epochs (epoch � 2,000 trials). The PFC takes longer to stabilize (i.e.,
exhibits greater levels of weight change across epochs) than the posterior cortex. For PFC, within-PFC recurrent weights were used. For Hidden, weights from
stimulus input to Hidden were used. Both sets of weights are an equivalent distance from error signals at the output layer. The learning rate is reduced at 10
epochs, producing a blip at that point.
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to use different PFC representations for different tasks, but this
strategy becomes less and less efficient as the number of tasks
increases. The adaptive gating mechanism also caused the PFC
representations to focus on single dimensions, instead of encoding
features across multiple dimensions, because the gating mechanism
caused all active PFC units to be inhibited upon a dimension switch,
discouraging persistent activation across multiple dimensions.
Thus, overall, the adaptive gating mechanism plays a critical role in
shaping the PFC representations.

Our model makes the additional prediction that PFC represen-
tations should stabilize later in development (training) than those
in posterior areas, because it is necessary for representations in
posterior systems to stabilize before the PFC can extract the
dimensions of these representations relevant to task performance.
We tested this by measuring the average magnitude of weight
changes from projections into the main hidden (posterior cortex)
layer and in the PFC layer. The hidden layer stabilized within 20
epochs (one epoch is 2,000 trials), whereas the PFC did not stabilize
until 70 epochs (Fig. 3c). This slower development of PFC repre-
sentations, together with the breadth of training required, is con-
sistent with the protracted developmental course of the human PFC
(extending into late adolescence), which allows a broad range of
experience to shape PFC representations (9–11).

Neuropsychological Tasks. We next explored whether the rule-like
PFC representations learned by our model can produce appropriate
patterns of performance in tasks specifically associated with pre-
frontal function. To do so, we used the full PFC model trained in
the All Tasks condition to perform simulations of the Stroop task
and the WCST, two tasks that have been used widely as benchmarks
of prefrontal function (27–30). Converging evidence from a variety
of sources suggests that the kinds of dimensional stimulus repre-
sentations found in our model are localized in dorsolateral areas of

PFC (DLPFC) in humans (see supporting information for more
discussion). Accordingly, we focused on DLPFC lesion data in both
of these tasks.

In the Stroop task, participants are presented with color words
printed in various colors and are asked to either read the word
or name the color in which it is printed. Due to greater familiarity
with word reading, it is relatively faster than color naming, and
an incongruent word (e.g., ‘‘green’’ displayed in red) interferes
with color naming (saying ‘‘red’’), whereas word reading is
relatively unaffected. To simulate these asymmetries of experi-
ence in our model, one of the stimulus dimensions was trained
less (25% as much) than the other four dimensions, with all other
factors unchanged from the first study. The model captures the
characteristic effects seen in human Stroop performance (Fig.
4a). These results replicate previous modeling work showing that
top-down excitation from PFC representations of the dimen-
sions that define each task (colors vs. words) can partially
compensate for the differences in relative strength of the rele-
vant posterior pathways (13, 26). However, unlike these earlier
models, PFC representations in our model developed through
learning. Furthermore, Fig. 4b shows that simulated lesions to
the model’s PFC layer (30% unit removal, post training) repli-
cate the color-naming impairments observed from PFC lesions
(predominantly dorsolateral areas of PFC) in human patients
(30), consistent with the observation that this PFC area supports
abstract color dimension representations (29).

In the WCST task, participants are provided with a deck of cards
bearing multidimensional stimuli that vary in shape, size, color, and
number. These must be sorted according to a particular dimension
(rule), which must be discovered from trial-and-error feedback.
The rule switches without warning after the participant makes a
criterion number of correct responses in sequence (e.g., ref. 8).
Patients with frontal damage typically are able to discover the first

Fig. 4. Neuropsychological task
results. (a) Performance of the full
PFC network on a simulated
Stroop task, demonstrating the
classic pattern of conflict effects
on the subordinate task of color
naming with unaffected perfor-
mance on the dominant word
reading task (human data from
ref. 31). This was simulated by
training one dimension (a) with
one-fourth the frequency of the
others, making it weaker. In the
neutral condition, a single feature
was active, whereas the conflict
condition had two features
present and the dimension cue in-
put specified that was to be
named. Reaction time (RT) was
measured as the number of cycles
to activate a feature in the re-
sponse layer �0.75 (multiplied by
35 to match human RT in msec). (b)
Stroop performance for a 30% le-
sion (removal) of PFC units in the
model (posttraining), compared
with data from ref. 30 on patients
with left frontal (LF) lesions (six of
eight include dorsolateral PFC) and matched controls (Ctrl) (data in seconds to complete a block of trials; model cycles were transformed as RT � cycles � 5.5–30
to fit this scale; the Conflict Word reading conditions were not run on the human subjects). The main effect of damage is an overall slowing of color naming,
consistent with the notion that the PFC provides top-down support to this weaker pathway via abstract dimensional representations. (c) Performance in a
simulated WCST task, demonstrating the classic pattern of increasing perseveration with increased PFC damage (% of units removed, posttraining). Persevera-
tions � number of sequential productions of feature names corresponding to the previously relevant dimension after a switch. Clearly, the simulated PFC is critical
for rapid flexible switching. (d) WCST results (perseverations) for the three different training conditions used by ref. 28 (128 is the standard case plotted before,
whereas 64A involves providing instructions about the relevant dimensions along which cards could be sorted, and 64B has explicit instruction when the rule
changes; see supporting information for details). n � 10 networks; error bars � standard error for all graphs.
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rule without difficulty, but after a switch, they perseverate in sorting
according to the previous rule. This and other similar findings have
led many authors to conclude that PFC plays a critical role in the
cognitive flexibility required to switch ‘‘mental set’’ from one rule
to another (4). In our model, we used the feature-naming task to
simulate the WCST: a stimulus is presented, and the feature value
in the relevant dimension must be output. The relevant dimension
is discovered via trial-and-error learning and switches after eight
correct responses in a row. Fig. 4c shows that increasing amounts of
PFC damage (unit removal and post training) produce a dispro-
portionate increase in perseverative responding relative to other
types of errors [consistent with earlier modeling studies with
manually imposed PFC representations (14, 15)]. Furthermore, the
model successfully reproduced the modest effects on perseveration
(Fig. 4d) that were observed with various levels of additional
instruction provided by Stuss et al. (28).

Discussion
The findings reported here provide insight into how the capacity
for flexible cognitive control can develop without invoking
unexplained forms of intelligence (i.e., a ‘‘homunculus’’). Our
model shows how specialized neural mechanisms that support
adaptive updating of active maintenance interact with breadth of
learning experience to produce abstract rule-like representa-
tions in the PFC. These PFC representations produced signifi-
cantly higher levels of generalization across tasks by guiding
stimulus processing according to abstract dimensions that apply
across both familiar and task-novel stimuli. This crosstask gen-
eralization is an important measure of cognitive flexibility. Thus,
the model illustrates how nature and nurture can interact to
produce human cognitive abilities. It explains in explicit mech-
anistic terms why rule-like representations are predominantly
found in the PFC (6–8), and why cognitive flexibility, dependent
upon the biological substrate of the PFC, takes a long time to
develop, extending into late adolescence (9–11).

Although we found that abstract rule-like PFC representations
supported good generalization in the fully regular domains that we
explored here, we do not claim that these representations are
universally beneficial. In particular, it is unlikely that such discrete
abstract representations are as useful in task domains characterized
by more graded knowledge structures, where distributed represen-
tations may perform better (e.g., perceptual categorization, face
recognition, etc.). Thus, there may be a tradeoff between PFC and
posterior cortical forms of representation, in which each is better
suited for different types of tasks. This is consistent with data
showing that the posterior cortex may be better at learning complex
similarity-based categories, whereas PFC can more quickly acquire
simple rule-based categories (32). More work is needed to explore
these potential tradeoffs, for example, in richer more complex

domains such as language, wherein our model may provide a
productive middle ground between the neural network and sym-
bolic modeling perspectives in the longstanding ‘‘rules and regu-
larities in language processing’’ debates (33).

The model illustrates another critical factor that contributes to
flexibility of control: the use of patterns of activity rather than
changes in synaptic weights as a means of exerting control over
processing (26, 34). We showed that PFC representations in our
model developed slowly over many trials of synaptic modifica-
tion. However, once these were learned, adaptive behavior in
novel circumstances was mediated by a search for the appropri-
ate pattern of activity (using simple principles of reinforcement
learning), rather than the need to learn a new set of connection
strengths. This may clarify the mechanisms underlying the
adaptive coding hypothesis (5), which holds that PFC dynami-
cally reconfigures itself for the task at hand. Importantly, this
activation-based processing differs fundamentally from the ar-
bitrary variable binding mechanisms of traditional symbolic
models (12), where the meaning of the underlying representa-
tions (symbols) can be arbitrarily bound to novel inputs to
achieve flexible performance. Thus, the representations in our
model produce rule-like behavior without implementing biolog-
ically problematic symbolic processing computations.

The tasks used in our simulations were relatively simple, with the
common requirement that the network selectively process one
dimension of information. Nevertheless, the principles developed
here are likely to apply in more realistic task domains, where the
relevant rules may be more complex. These complex rule repre-
sentations must also be maintained over a sequence of behaviors
operating on specific stimuli (e.g., rules of a card game applied over
different rounds of play), to guide behavior in a more systematic
fashion. Thus, the learning mechanisms in our model, which form
abstract rule-like representations by integrating over trials of pro-
cessing specific instances of the rule, should also apply in these
cases.

Finally, although our model provides an important step toward
understanding the neurobiological mechanisms underlying flexible
human cognitive control, it captures only a subset of such mecha-
nisms. An understanding of how PFC representations can be
dynamically recombined and can interact with other systems (such
as those supporting episodic memory, language function, and
affect) will be equally important in developing a full understanding
of how cognitive control is implemented in the brain.

We thank Carlos Brody, Tim Curran, Michael Frank, Tom Hazy, Dave
Jilk, Ken Norman, Yuko Munakata, Alex Petrov, and members of the
Computational Cognitive Neuroscience lab for helpful comments. This
work was supported by Office of Naval Research Grants N00014-00-1-
0246 and N00014-03-1-0428 and National Institutes of Health Grants
MH64445 and MH069597.

1. Goldman-Rakic, P. S. (1987) Handb. Physiol. 5, 373–417.
2. Fuster, J. M. (1997) The Prefrontal Cortex: Anatomy, Physiology and Neuropsychology of the

Frontal Lobe (Lippincott–Raven, New York), 3rd Ed.
3. Miller, E. K. & Cohen, J. D. (2001) Annu. Rev. Neurosci. 24, 167–202.
4. Shallice, T. (1988) From Neuropsychology to Mental Structure (Cambridge Univ. Press, New York).
5. Duncan, J. (2001) Nat. Rev. Neurosci. 2, 820–829.
6. White, I. M. & Wise, S. P. (1999) Exp. Brain Res. 126, 315–335.
7. Wallis, J. D., Anderson, K. C. & Miller, E. K. (2001) Nature 411, 953–956.
8. Sakai, K. & Passingham, R. E. (2003) Nat. Neurosci. 6, 75–81.
9. Diamond, A. & Goldman-Rakic, P. S. (1989) Exp. Brain Res. 74, 24–40.

10. Huttenlocher, P. R. (1990) Neuropsychologia 28, 517–527.
11. Morton, J. B. & Munakata, Y. (2002) Dev. Sci. 5, 435–440.
12. Newell, A. & Simon, H. A. (1972) Human Problem Solving (Prentice–Hall, Englewood Cliffs,

NJ).
13. Cohen, J. D., Dunbar, K. & McClelland, J. L. (1990) Psychol. Rev. 97, 332–361.
14. Dehaene, S. & Changeux, J. P. (1991) Cereb. Cortex 1, 62–79.
15. O’Reilly, R. C., Noelle, D, Braver, T. S. & Cohen, J. D. (2002) Cereb. Cortex 12, 246–257.
16. Braver, T. S. & Cohen, J. D. (2000) in Control of Cognitive Processes: Attention and Performance,

eds. Monsell, S. & Driver, J. (MIT Press, Cambridge, MA), XVIII Ed., pp. 713–737.
17. O’Reilly, R. C., Braver, T. S. & Cohen, J. D. (1999) in Models of Working Memory:

Mechanisms of Active Maintenance and Executive Control, eds. Miyake, A. & Shah, P.
(Cambridge Univ. Press, New York), pp. 375–411.

18. Monsell, S. (1996) in Unsolved Mysteries of the Mind: Tutorial Essays in Cognition, ed. Bruce,
V. (Psychology Press, Hove, U.K.), pp. 93–148.

19. Fellous, J. M., Wang, X. J. & Lisman, J. E. (1998) Nat. Neurosci. 1, 273–275.
20. Durstewitz, D., Seamans, J. K. & Sejnowski, T. J. (2000) J. Neurophysiol. 83, 1733–1750.
21. Cohen, J. D., Braver, T. S. & O’Reilly, R. C. (1996) Philos. Trans. R. Soc. London B 351,

1515–1527.
22. Hochreiter, S. & Schmidhuber, J. (1997) Neural Comput. 9, 1735–1780.
23. Frank, M. J., Loughry, B. & O’Reilly, R. C. (2001) Cognit. Affect. Behav. Neurosci. 1,

137–160.
24. Rougier, N. P. & O’Reilly, R. C. (2002) Cognit. Sci. 26, 503–520.
25. Montague, P. R., Dayan, P. & Sejnowski, T. J. (1996) J. Neurosci. 16, 1936–1947.
26. O’Reilly, R. C. & Munakata, Y. (2000) Computational Explorations in Cognitive Neuro-

science: Understanding the Mind by Simulating the Brain (MIT Press, Cambridge, MA).
27. Weinberger, D. R., Berman, K. F. & Daniel, D. G. (1991) in Frontal Lobe Function and

Dysfunction, eds. Levin, H. S., Eisenberg, H. M. & Benton, A. L. (Oxford Univ. Press, New
York), pp. 276–285.

28. Stuss, D. T., Levine, B., Alexander, M. P., Hong, J., Palumbo, C., Hamer, L., Murphy, K. J.
& Izukawa, D. (2000) Neuropsychologia 38, 388–402.

29. MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A. & Carter, C. S. (2000) Science 288,
1835–1838.

30. Stuss, D. T., Floden, D., Alexander, M. P., Levine, B. & Katz, D. (2001) Neuropsychologia
39, 771–786.

31. Dunbar, K. & MacLeod, C. M. (1984) J. Exp. Psychol. 10, 622–639.
32. Smith, E. E., Patalano, A. L. & Jonides, J. (1998) Cognition 65, 167–196.
33. McClelland, J. L. & Patterson, K. (2002) Trends Cognit. Sci. 6, 465–472.
34. Munakata, Y. (1998) Dev. Sci. 1, 161–184.

Rougier et al. PNAS � May 17, 2005 � vol. 102 � no. 20 � 7343

N
EU

RO
SC

IE
N

CE


