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Abstract

The “Necker-Zeno model”, a model for bistable perception inspired by the
quantum Zeno effect, was previously used to relate three basic time scales of
cognitive relevance to one another in a quantitative manner. In this paper,
the model predictions are compared with experimental results obtained under
discontinuous presentation of an ambiguous stimulus. In addition to earlier
results for long inter-stimulus intervals, we show that the reversal dynamics
according to the Necker-Zeno model is also in agreement with new results for
short inter-stimulus intervals. Moreover, we refine the model in such a way
that it accounts for the distribution of “dwell times” (inverse reversal rates).
Finally, we indicate applications concerning the modification of cognitive time
scales under conditions of psychopathological impairments and meditation-
induced modes of awareness.

1 Introduction

The bistable perception of ambiguous stimuli or in binocular rivalry is well estab-
lished as an interesting arena to study phenomena of attention and perceptual
awareness and their neural basis (Kruse and Stadler 1995, Tong 2001, Blake and
Logothetis 2002, Long and Toppino 2004). Binocular rivalry and perceptual re-
versals of ambiguous stimuli have several features in common. Examples are: the

1



form of the distribution of dwell times (inverse reversal rates) for a given stimulus
(Borsellino et al. 1972, Lehky 1995), a high inter-individual variability in reversal
rates (Borsellino et al. 1972, Aafjes et al. 1966), and a sizable influence of physical
stimulus properties (Ammons and Ammons 1963, Walker 1978).

But there are also indications for differences between ambiguous stimuli and
binocular rivalry. For instance, voluntary control of subjects over reversal rates
seems to be pronounced for ambiguous stimuli (van Ee et al. 2005) but quite limited
for binocular rivalry (van Ee 2005, Meng and Tong 2004). This has been interpreted
in terms of a higher influence of bottom-up, stimulus-driven processing for binocular
rivalry as compared to ambiguous stimuli. For a good review of the current state of
knowledge on binocular rivalry see see Alais and Blake (2005).

A number of EEG studies of perceptual reversals have found ERP (event-related
potential) correlates. Basar-Eroglu et al. (1993) reported a P300-like component
with perceptual reversals, which was interpreted as a correlate of cognitive process-
ing. Kornmeier and Bach (2004) were able to detect earlier ERP components start-
ing at 130 msec with a refined experimental design. In the frequency domain, both
increased γ-activity (Strüber et al. 2000) and decreased α-activity (Isoglu-Alkac et
al. 2000) were reported to occur in the time range of the P300 component.

In this contribution, we consider bistable perception from a theoretical perspec-
tive. Different from numerous theoretical approaches in the literature (e.g., Wil-
son 2003, Freeman 2005, Laing and Chow 2002, and others) we do not primarily
look for neural mechanisms implementing the reversal dynamics. Our model (first
proposed by Atmanspacher et al. 2004) has been worked out in the spirit of a
system-theoretical framework that can be applied to cognitive states and proper-
ties without requiring an explicit discussion of their neural correlates. (Of course,
such correlates will be a desirable further ingredient of the model if they can be
determined.) The model relates the dwell time in bistable perception, which has
been theoretically studied extensively (see, e.g., Fürstenau 2006, Mamassian and
Goutcher 2005, Lehky 1995, Brascamp et al. 2005, Kalarickal and Marshall 2000),
to other important cognitive time scales.

The proposed model is called the Necker-Zeno model and will be shortly reviewed
in Sec. 2. In Sec. 3 we implement a refinement of the model that allows us to describe
the distribution of dwell times. In Sec. 4 we show that a predicted quantitative
relationship between different cognitive time scales, which was earlier confirmed by
data from Kornmeier (2002), is also in agreement with new experimental material
from Kornmeier et al. (2007). In Sec. 5 we predict that particular cognitive time
scales should be dramatically changed during particular modes of awareness that
are restricted or enhanced with respect to “normal” cognition. Future experimental
work to test corresponding conjectures is proposed.
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2 Necker-Zeno Model for Bistable Perception

A theoretical approach to describe the dynamics of alternating perceptive config-
urations was recently proposed in terms of the so-called Necker-Zeno model (At-
manspacher et al. 2004). This model is inspired by the Zeno effect for unstable
quantum states (Misra and Sudarshan 1977) and describes the perceptual insta-
bility of ambiguous stimuli in a formal fashion. In contrast to attempts to ap-
ply standard quantum physics to brain functioning and consciousness directly, the
Necker-Zeno model is based on a generalized formal framework, particularly suited
for applications beyond physics (Atmanspacher et al. 2002). Earlier suggestions to
use Zeno-type arguments for cognitive systems are due to Ruhnau (1995) and Stapp
(1999).

A key assumption of the Necker-Zeno model is that the cognitive state corre-
sponding to a perceived stimulus is updated at intervals ∆T (of the order of 30 msec
to 70 msec, see below). The probability that no reversal occurs within a duration T
between two successive updates is then given by:

w(T ) = cos2(gT ) with g =
π

4t0
, (1)

where t0 characterizes the period of the reversal dynamics assuming no updates (of
the order of 300 msec, see below). The inverse of t0, g, determines how fast the
cognitive state corresponding to a perceived stimulus decays.

Let {τi}i=0,...,N be the instants at which an update of the cognitive state has
been performed, and let w(τN , τN−1, ..., τ1, τ0 = 0) be the joint probability that no
perceptual reversal has occured from τ0 up to τN = T . Then

W (T ) := w(τN , τN−1, ..., τ1) =
N∏

i=1

cos2(g(τi − τi−1)) =
N∏

i=1

cos2(g∆T (i)) ,

with
∆T (i) = τi − τi−1 .

For the Necker-Zeno model we have ∆T (i) � t0, so we may expand the cosine
up to the quadratic term:

W (T ) ≈ e2 ln(1− 1
2
g2(∆Ti)

2) ≈ e−g2
�N

i=1(∆Ti)
2

.

Assuming a constant updating interval ∆T (i) = ∆T , we obtain

W (T ) = e−g2N(∆T )2 ,

which means for T = N∆T :

W (T ) = e−g2∆T ·T . (2)
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W (T ) is the probability that no reversal has occurred up to time T . Hence,
1−W (T ) describes the integrated (cumulative) distribution of “dwell times” (inverse
reversal rates). It yields the following probability distribution (density) for dwell
times:

P (T ) = −dW (T )

dT
= γe−γT , (3)

where γ = g2∆T . The mean dwell time 〈T 〉 is given by:

〈T 〉 =
1

γ
=

(
16

π2

)
t20

∆T
, (4)

leading to the relation
∆T · 〈T 〉 = Ct20 , (5)

where C is of the order of 1 such that t0 is basically the geometric mean of 〈T 〉 and
∆T .

In this way, the Necker-Zeno model predicts a quantitative relationship between
three time scales which can be interpreted in terms of cognitive time scales (for more
details see Atmanspacher et al. 2004):
(i) The time between successive information updates of the cognitive state is related
to the so-called sequential order threshold of ∆T ≈ 30 msec (Pöppel 1997). In the
original quantum Zeno effect ∆T is the time between successive observations.
(ii) The decay time for a sensory input to become consciously accessible (cognitively
processed) is of the order of t0 ≈ 300 msec (Basar-Eroglu et al. 1993). In the
original quantum Zeno effect t0 is the oscillation period between the two unstable
states without updates, a situation which is of more or less hypothetical character
in cognition.
(iii) The observed mean dwell time 〈T 〉 between successive reversals of competing
configurations of an ambiguous stimulus is usually of the order of 3 sec (Pöppel
1997).

These cognitive time scales obviously satisfy Eq. (5). More detailed empirical
tests of Eq. (5) are possible if one of the time scales can be measured as a function of
another one, which is experimentally controllable, while the third one is considered
fixed. We come back to this option in Sec. 4.

3 Distribution of Dwell Times

The Necker-Zeno model as introduced in the preceding section predicts an exponen-
tial decrease for W (T ) according to Eq. (2) and, hence, a Poisson distribution for
P (T ) according to Eq. (3). Early observations of P (T ) by Borsellino et al. (1972)
revealed, however, that the dwell time distribution resembles a gamma distribution
of the form

P (T ) ∝ T b e−γT .
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In order to reproduce this observed behavior of the dwell time distribution, we may
refine the Necker-Zeno model with b = 0 (cf. Eq. (3)) in one of two possible ways.
We can assume that either the decay parameter g or the updating interval ∆T is
non-constant during an initial (transient) phase of the process. Indications for such
an initial phase were earlier reported by Dornic (1967) and Price (1969), who found
increased dwell times during the initial stage of stimulus observation.

3.1 Non-Constant Decay g

Suppose that the parameter g depends on the number of previous updates. We set

g(i) = g · f(i) ,

where f(i) is a function which starts from 0 and approaches 1 for large i. Now we
consider f to be of the form

f(i) = tanh

(
i

α

)
,

where α determines the number of updates Nc within the transient period during
which g(i) increases up to its asymptotic value. As f(i) grows approximately linearly
for small values of i, we determine α from the condition that the argument of the
tanh is one:

Nc

α
= 1 .

The relation between (ordinary) time T and the number of updates N is linear,

T = T (N) = N∆T ,

and leads to the condition:

α =
Tc

∆T
.

Tc is the time after which f(i) has roughly approached its asymptotic value.

3.2 Non-Constant Updating ∆T

As an alternative to an initial increase of g (Sec. 3.1), we now leave g time-independent
and suppose that the updating interval ∆T is not constant:

∆T (i) = τi − τi−1 = ∆T · f(i) ,

where f(i) is defined as above. Again we posit the condition

Nc

α
= 1 ,
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but now the relation between the number N of updates and time T is more compli-
cated:

T = T (N) =
N∑

i=1

∆T (i) = ∆T
N∑

i=1

f(i) .

For the determination of α we take f(i) to be approximately linear for i < Nc

and obtain an approximate relation between Nc and Tc, now understood as the time
after which ∆T has approached its asymptotic value:

∆T

Nc∑
i=1

(
i

α

)
= ∆T

Nc(Nc − 1)

2α
= Tc .

From this follows for α = Nc (the same condition as in Sec. 3.1):

(α − 1)

2
=

Tc

∆T

or, roughly,

α =
2Tc

∆T
.

This result differs from the result for constant ∆T by a factor of 2.

3.3 Comparison

We now compare the behavior of the dwell time distribution for the two cases de-
scribed in Secs. 3.1 and 3.2. In both cases, we obtain for the integrated dwell time
distribution introduced in Sec. 2:

w(τN , τN−1, ..., 1) =
N∏

i=1

cos2(gf(i)∆T ) ≈ e−g2(∆T )2
�

i f(i)2 ,

with τi = ∆T
∑i

j=1 f(j). So we find

W (T ) = exp

(
−g2(∆T )2

N∑
i=1

f(i)2

)
, (6)

where T as a function of the number N of updates is given by

T (N) = ∆T · N for non-constant g ,

T (N) = ∆T

N∑
i=1

f(i) for non-constant ∆T .

Strictly speaking, these relations have to be solved for N in order to obtain N(T )
which then yields W (T ) = W (N(T )).
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Approximating sums by integrals, we have:

W (T ) = exp

(
−g2(∆T )2

∫ N

0

f(x)2dx

)

with

T (N) = ∆T · N for non-constant g ,

T (N) = ∆T

∫ N

0

f(x)dx for non-constant ∆T . (7)

P (T ) is obtained by taking the derivative with respect to T (cf. Eq. (3)):

P (T ) = −dW (T )

dT
= −dW (N)

dN
· dN

dT
.

While the first factor in P (T ),

dW (N)

dN
= −g2(∆T )2f(T )2 exp

(
−g2(∆T )2

∫ N

0

f(x)2dx

)
,

is the same in both cases, we find for the inverse of the second factor in P (T ):

dT (N)

dN
= ∆T for non-constant g ,

dT (N)

dN
= ∆Tf(T ) for non-constant ∆T .

So we obtain:

P (T ) = g2(∆T )f(T )2 exp

(
−g2(∆T )2

∫ N

0

f(x)2dx

)
for non-constant g (8)

P (T ) = g2(∆T )f(T ) exp

(
−g2(∆T )2

∫ N

0

f(x)2dx

)
for non-constant ∆T .(9)

One difference between these two expressions, which hold for any monotonic function
f(T ), derives from the fact that time T as a function of N has to be obtained
according to different prescriptions (see Eq. (7)). But the main difference is that
for non-constant g, P (T ) is proportional to f(T )2, while for non-constant ∆T it is
proportional to f(T ). Depending on the power-law behavior of f(T ) as a function
of small T , this leads to a different behavior in P (T ).

In Fig. 1, the two distributions according to Eqs. (8,9) for ∆T = 70 msec, t0 =
300 msec, and Tc = 1.05 sec are compared. The figure shows that the increase of
P (T ) for small T is steeper for non-constant ∆T . Already the early observations of
dwell times by Borsellino et al. (1972) (similarly Brascamp et al. 2005) indicate that
P (T ) follows a high power of T for small T . In principle, good fits to experimental
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Figure 1: Distribution P (T ) according to Eqs. (8,9), where the initial behavior of the
reversal dynamics is implemented (a) due to an increasing update interval ∆T (squares)
and, alternatively, (b) due to an increasing decay parameter g (crosses). Parameters are
t0 = 300 msec and ∆T = 70 msec (reached after about one second in case (a)).
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Figure 2: Distribution P (T ) for t0 = 300 msec according to (a) gamma distributions
(solid lines) with b = 2 for ∆T = 70 msec (highest maximum) and ∆T = 30 msec; (b)
according to Eq. (8) for non-constant g, and with ∆T = 70 msec (crosses) and ∆T = 30
msec (squares). Gamma distributions decay considerably faster for larger T .
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dwell times can be obtained for both Eq. (8) and (9), depending on the choice of
f(T ). However, assuming an intuitively plausible low power for f(T ), for instance
tanh(T ), suggests that the slower increase of P (T ) due to a non-constant g fits
the experimentally obtained results better. (The mentioned observations by Price
(1969) also support an initial variability of g rather than ∆T .) Therefore, Fig. 2
shows a comparison of gamma distributions with distributions according to Eq. (8)
(time-dependent g) for ∆T = 70 msec and ∆T = 30 msec.

It is tempting to speculate about a cognitive interpretation of the time-dependence
of g or ∆T . In a vague sense, which needs to be made more precise, one might argue
that an initially focused and subsequently decreasing attention could be an inter-
esting candidate. This would mean that increased attention can both accelerate the
updating of a given cognitive state and decelerate the decay out of this state. Our
model favors the second option, but in order to confirm that this has in fact to do
with attention, additional independent pieces of evidence would be necessary.

For instance, one might speculate that recent evidence (van Ee 2005, Meng and
Tong 2004) for voluntary control over dwell times in the perception of ambiguous
figures – as opposed to binocular rivalry – would imply a significant contribution
of top-down processing – as opposed to bottom-up processing. The times scales
involved should thus be longer for bistability in ambiguous perception. Moreover,
Reisberg and O’Shaughnessy (1984) found that dwell times increase if attention is
distracted, and Vickers (1972) found that dwell times are reduced by increasing
vigilance. Further experimental investigations of the relation between volitional
attention or vigilance and dwell times are in progress.

4 Cognitive Time Scales under

Discontinuous Stimulus Presentation

Research on perceptual reversals of ambiguous stimuli started with continuous stim-
ulus presentation, but already Orbach et al. (1963, 1966) proposed discontinuous
presentation as an important alternative. In this presentation mode, the stimulus
is interrupted by inter-stimulus intervals (or off-times) toff . Variation of toff was
shown to have a significant influence on dwell times 〈T 〉. Their results were later
reproduced by Leopold et al. (2002), Maier et al. (2003), Grossmann and Dobbins
(2006), Kornmeier (2002), and Kornmeier et al. (2007). Smallest dwell times 〈T 〉
(highest reversal rates) occur for toff of the order of t0 ≈ 300 msec. For toff ≤ t0,
〈T 〉 increases to the value observed under continuous presentation (Orbach et al.
1963, 1966, Kornmeier et al. 2007), and for toff ≥ t0, 〈T 〉 can increase as much as
providing a reversal rate of close to zero (Leopold et al. 2002, Maier et al. 2003).
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4.1 toff ≥ 300 msec

In the experiments presented by Kornmeier (2002), the stimulus was a Necker lattice,
consisting of 3 by 3 Necker cubes. The stimuli were presented to 10 subjects on a
computer screen with on-and off-times of 50, 100, 400, 700, and 1000 msec. For
each block of 60 seconds, another combination of ton and toff was chosen. Between
blocks, a blank screen was shown for 30 seconds. Subjects indicated a perceptual
reversal by pressing a button.

In agreement with earlier observations, Kornmeier (2002) found that 〈T 〉 is more
or less independent of ton. The significant dependence of 〈T 〉 on toff , on the other
hand, can be compared with the prediction of the Necker-Zeno model. In this model,
it can be argued that the off-times toff in discontinuous presentation represent a
“forced” decay time t0 as long as toff ≥ 300 msec (for details see Atmanspacher et
al. 2004).

Under this assumption, the Necker-Zeno model has been experimentally con-
firmed with data from both Orbach et al. (1966) and Kornmeier (2002). Figure
3 (reproduced from Atmanspacher et al. 2004) shows mean dwell times 〈T 〉 as a
quadratic function of toff ≈ t0 as predicted by Eq. (5). In addition to and indepen-
dent of the quadratic dependence that the model predicts, the best polynomial fit
to the data is also quadratic and yields ∆T ≈ 70 msec. (We found that linear and
cubic fits have a variance by a factor of 2.7 and 3.7 higher than the variance of the
quadratic fit.)

Note that the lowest off-time toff = 200 msec in Fig. 3 has the largest relative
deviation from the predicted curve. In the subsequent subsection we will show that
this is consistent with our model for off-times toff ≤ 300 msec, where 〈T 〉 changes
its functional dependence on toff qualitatively and increases with decreasing toff .

4.2 toff ≤ 300 msec

For off-times smaller than 300 msec, we analyzed data from experiments by Korn-
meier et al. (2007) in which the Necker lattice was presented to 12 subjects. The
presentation time was constant at 800 msec ± a randomly varied addition between 0
and 100 msec (see below), and toff was randomly chosen among 14, 43, 130, and 390
msec, where the last value served to identify the transition to long inter-stimulus in-
tervals. All off-times occurred equally often. The randomized sequence of off-times
avoided habituation effects due to identical successive off-times. Subjects indicated
a perceptual reversal by pressing a button. If a reversal was reported, the subsequent
off-time was set to 1000 msec, and the observation sequence was restarted.

Since the off-times were varied randomly over time, it is not appropriate to
consider reversal rates relative to observation time. Instead, the number of reversals
following each off-time was counted and related to the total number of occurrences
of the corresponding off-time. The dependence of 〈T 〉 on toff for short off-times as
observed by Orbach et al. (1963, 1966) was essentially reproduced by the results of
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Figure 3: Experimentally obtained mean dwell times 〈T 〉 (inverse reversal rates) for the
bistable perception of a discontinuously presented Necker cube. Crosses mark results from
Kornmeier and Bach (2004); for each off-time, 〈T 〉 (including standard errors) is plotted
for three on-times of 0.05 sec, 0.1 sec, and 0.4 sec. Squares mark results from Orbach et
al. (1966) for an on-time of 0.3 sec (no errors indicated in Orbach et al. (1966)). The
plotted curve shows 〈T 〉 as a function of off-times toff according to Eq. (5) with ∆T ≈ 70
msec. (Reproduced from Atmanspacher et al. (2004) with permission, c© Springer-Verlag,
Heidelberg.)

Kornmeier et al. (2007). We now show that, in addition to describing the behavior
of dwell times for long off-times, the Necker-Zeno model is also capable of describing
reversal rates as a function of small off-times.

First, we calculated W (T ) according to Eq. (6) with T = ∆T ·N (the case where g
is time-dependent) for f(T ) = tanh(T ) and for on-times T on

n = (700+n 100/7) msec
(n = 0, ..., 14). (100/7 ≈ 14 msec corresponds to the duration of one image on
a screen operating with a frequency of 70 Hz.) This corresponds to the on-times
chosen by Kornmeier et al. (2007) of 800 msec ± a randomly chosen time-interval
between 0 and 100 msec.

Second, we multiplied the averaged on-time probability with woff(T ) according to
Eq. (1) for off-times T off

k = k 100/7 msec for the values k = 1, 3, 9. This corresponds
to Kornmeier et al.’s (2007) choices of T off

k = 14, 43, 130 msec. T off
k = 390 msec is

outside the scope of small off-times. The mean dwell time of 2.7 sec, corresponding
to the reversal rate of 0.36/sec shown in Fig. 4, is in excellent agreement with the
observations for large off-times in Fig. 3.
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The results for small off-times are the three probabilities

wk = W (T = 800 ± n 100/7) woff(Tk) ,

where W (T ) is a mean value over n = 0, ..., 14. The probabilities (1−wk) represent
reversal rates and are plotted in Fig. 4 for two different sets of parameters ∆T , t0
and Tc.

• Asterisks in Fig. 4 show reversal rates wk for ∆T = 16 msec, Tc = 63 msec, and
t0 = 209.4 msec, obtained from a least-squares fit of the reversal rates according
to the Necker-Zeno model with the reversal rates observed by Kornmeier et
al. (2007). Note, however, that we cannot determine ∆T and Tc separately,
because they appear in combined form in W (T ). Table 1 shows combinations
of ∆T and Tc within a range of 0.025% of the variance of the best fit providing
t0 = 209.4 msec. All combinations listed in Tab. 1 are consistent with the
measured dwell times.

• Squares in Fig. 4 show reversal rates wk for ∆T = 30 msec, t0 = 300 msec and
Tc = 0, the parameters of the original Necker-Zeno model reviewed in Sec. 2.

∆T 14.5 16 18 20 22 26.5 37 38 41.5 43.5 45.5 47.5 51 54.5 59.5
Tc 0 63 146 209 261 355 512 523 564 585 606 627 658 690 732

Table 1: Combinations of ∆T and Tc (both in msec) for t0 = 209.4 msec, obtained by
least-squares fits with a variance within 0.025% of the best fit. Obviously the quality of
the fit hardly depends on the values listed.

5 Ideas for Future Work

Equation (5) predicts that, if t0 is supposed to remain fixed, an increase of 〈T 〉
implies a decrease of ∆T (and vice versa). This prediction is at variance with
another, hierarchically conceived proposal regarding 〈T 〉 as integrating a particular
number of elementary update intervals so that 〈T 〉 is a multiple of ∆T (Pöppel 1997).
Since 〈T 〉 shows considerable interindividual variations, it is in principle possible to
distinguish between the two approaches on an empirical basis: Measuring ∆T as a
function of 〈T 〉 for subjects with sufficiently different 〈T 〉 should yield accordingly
different values of ∆T .

Much empirical material relevant in this context was collected by Steinbüchel et
al. (1999), with a special emphasis on clinical implications of temporal perception
on the time scales mentioned above. Unfortunately, they did not report covariations
of different time scales for the same individuals, so Eq. (5) cannot be tested using
their published data.
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Figure 4: Reversal rates versus off-times toff : (a) Experimental observations from Ko-
rnmeier et al. (2007), with standard error of the mean for the corresponding population;
(b) best fit of (1 − wk) to those experimental data according to the Necker-Zeno model
(asterisks), yielding ∆T ≈ 16 msec, t0 ≈ 210 msec, and Tc ≈ 63 msec; (c) results (squares)
for assumed parameters ∆T = 30 msec and t0 = 300 msec. Values for (b) are calculated
under the condition of an initially increasing g. The reversal rate for toff = 390 msec is
disregarded in the fit since it is outside the scope of small off-times.

Among other results, Steinbüchel et al. (1999) found that ∆T is significantly
increased in patients with posterior left-hemispheric lesions with fluent aphasic syn-
dromes. In these patients, and in children suffering from language-learning impair-
ments or dyslexia, behaviorally-oriented training was shown to reduce ∆T down to
the normal range so that the ability to resolve rapidly presented stimuli was (partly)
regained.

It is plausible that the size of the sequential order threshold ∆T can be re-
garded as an elementary update interval characterizing the temporal resolution of
perceptual awareness. This resolution can possibly be further increased by particu-
lar techniques among which meditative practice may play a role. In the frequency
domain, Lehmann et al. (2001) and Lutz et al. (2004) reported specific features of
γ-activity in particular meditative states and interpreted these results in terms of
different modes of awareness.

In the time domain, the observations by Carter et al. (2005) on experienced
meditators are eminently interesting since the reported increase of 〈T 〉 exceeds two
orders of magnitude during specific kinds of meditation. This has to be compared
with a much smaller factor of up to five for interindividual variations as they are
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commonly known. For meditators, it should therefore be possible to detect the
relationship between 〈T 〉 and ∆T with evidentiary significance if both time scales
are co-determined.

According to the Necker-Zeno model (Eq. (5)), an enormously increased mean
dwell time 〈T 〉 is accompanied either by a corresponding decrease of ∆T or by an
increase of t0 (or by a combination of both). This would imply either an extraordi-
nary enhancement of the time resolution of perceptual awareness, based on a very
rapid update of processed information, or a drastically delayed decay of the cognitive
state in reaction to a perceived stimulus. The relative impact of the time scales ∆T
and t0 can be tested with existing experimental designs, combining measurements of
sequential order thresholds, of decay times of the cognitive state, and of dwell times
of bistable stimuli. In addition, it would be interesting to study how discontinuous
stimulus presentation modulates dwell times during meditation.

6 Summary

A quantitative model called Necker-Zeno model, developed by Atmanspacher et
al. (2004) for the description of the reversal dynamics in the perception of bistable
stimuli, has been refined and extended to fit additional empirical results not consid-
ered so far. In particular, we focused (i) on the distribution P (T ) of dwell times T
or, respectively, reversal rates and (ii) on the behavior of mean dwell times 〈T 〉 un-
der discontinuous presentation of the stimulus. It turned out that the Necker-Zeno
model is in good agreement with the analyzed experimental data.

With respect to the distribution P (T ), we refined the model by accounting for
an initial (transient) phase of the dynamics which is highly plausible. This can
be achieved in two formally different ways that lead to different forms of P (T ).
Recent results by Brascamp et al. (2005) suggest a criterion to distinguish one of
them as more appropriate on an empirical basis. We may speculate that some kind
of attention relaxation is a significant factor for a cognitive interpretation of the
competing kinds of initial behavior.

With respect to the mean dwell times 〈T 〉 under discontinuous stimulus presen-
tation, we extended the model by accounting for short presentation off-times. In
addition to the correct prediction of an increasing 〈T 〉 for increasingly long off-times
reported earlier (Atmanspacher et al. 2004), the Necker-Zeno model does also cor-
rectly describe an increase of 〈T 〉 for decreasingly short off-times recently reported
by Kornmeier et al. (2007). These results are non-trivial since they represent op-
posing trends for long and short off-times, separated by a critical time scale of the
order of 300 msec.

Finally, we indicate some ideas and options for further empirical tests of the
Necker-Zeno model. They are essentially based on the fact that the model predicts
a fairly simple quantitative relation (Eq. (5)) between three significant cognitive
time scales that are often discussed to be of the order of approximately 30, 300, and
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3000 milliseconds. Recent observations by Carter et al. (2005) suggest that they
can be dramatically changed under specific conditions.
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Basar-Eroglu, C., Strüber, D., Stadler, M., and Kruse, E. (1993). Multistable
visual perception induces a slow positive EEG wave. International Journal of
Neuroscience 73, 139–151.

Blake, R., and Logothetis, N. (2002). Visual competition. Nature Neuroscience 3,
1–11.

Borsellino, A., de Marco, A., Alazetta, A., Rinesi, S., and Bartolini R. (1972):
Reversal time distribution in the perception of visual ambiguous stimuli. Ky-
bernetik 10, 139–144.

Brascamp, J.W., van Ee, R., Pestman, W.R., and van den Berg, A.V. (2005). Dis-
tributions of alternation rates in various forms of bistable perception. Journal
of Vision 5, 287–298.

Carter, O.L., Presti, D.E., Callistemon, C., Ungerer, Y., Liu, G.B., and Pettigrew,
J.D. (2005). Meditation alters perceptual rivalry in Tibetan Buddhist monks.
Current Biology 15, R412–R413.

15



Dornic, S. (1967). Measurement of satiation in reversible figures. Studia Psycho-
logica 9, 18-24.

Freeman, A.W. (2005). Multistage model for binocular rivalry. Journal of Neuro-
physiology 94, 4412–4420.

Fürstenau, N. (2006). Modelling and simulation of spontaneous perceptioin switch-
ingwith ambiguous visual stimuli in augmented vision systems. In Lecture
Notes in Computer Science 4021, Springer, Berlin, pp. 20–31.

Grossmann, J.K., and Dobbins A.C. (2006). Competition in bistable vision is
attribute-specific. Vision Research 46, 285–292.

Isoglu-Alkac, U., Basar-Eroglu, C., Ademoglu, A., Demiralp, T., Miener, M., and
Stadler, M. (1998). Analysis of the electroencephalographic activity during
Necker cube reversals by means of the wavelet transform. Biological Cybernet-
ics 79, 437–442.

Kalarickal, G.J., and Marshall, J.A. (2000). Neural model of temporal and sto-
chastic properties of binocular rivalry. Neurocomputing 32-33, 843–853.

Kornmeier, J. (2002): Wahrnehmungswechsel bei mehrdeutigen Bildern – EEG-
Messungen zum Zeitverlauf neuronaler Mechanismen. PhD thesis, University
of Freiburg.

Kornmeier, J., and Bach, M. (2004). Early neural activity in Necker cube reversal:
Evidence for low-level processing of a gestalt phenomenon. Psychophysiology
41, 1–8.

Kornmeier, J., Ehm, W., Bigalke, H., and Bach, M. (2007). Discontinuous pre-
sentation of ambiguous figures: How interstimulus-interval durations affect
reversal dynamics and ERPs. Psychophysiology 44, in press.

Kruse, P., and Stadler, M., eds. (1995). Ambiguity in Mind and Nature. Springer,
Berlin.

Laing, C.R., and Chow, C.C. (2002). A spiking model for binocular rivalry. J.
Comput. Neuroscience 12, 39–53.

Lehmann, D., Faber, P.L., Achermann, P., Jeanmonod, D,. Gianotti, L.R.R.,
and Pizzagalli, D. (2001). Brain sources of EEG gamma frequency during
volitionally meditation-induced, altered states of consciousness, and experience
of the self. Psychiatry Research 108, 111–121.

Lehky, S.R. (1995). Binocular rivalry is not chaotic. Proceedings of the Royal
Society London B 259, 71–76.

16



Leopold, D.A., Wilke, M., Maier, A., and Logothetis, N. (2002). Stable perception
of visually ambiguous patterns. Nature Neuroscience 5, 605–609.

Long, G.M., and Toppino, T.C. (2004). Enduring interest in perceptual ambiguity:
Alternating views of reversible figures. Psychological Bulletin 130, 748–768.

Lutz, A., Greischar, L.L., Rawlings, N.B., Ricard, M., and Davidson, R.J. (2004).
Long-term meditators self-induce high-amplitude gamma synchrony during
mental practice. Proc. Natl. Acad. Sci. USA 101, 16369–16373.

Maier, A., Wilke, M., Logothetis, N., and Leopold, D.A. (2003). Perception of
temporally interleaved ambiguous patterns. Current Biology 13, 1076–1085.

Mamassian, P., and Goutcher, R. (2005). Temporal dynamics in bistable percep-
tion. Journal of Vision 5, 361–375.

Meng, M., and Tong, F. (2004). Can attention selectively bias bistable perception?
Differences between binocular rivalry and ambiguous figures. Journal of Vision
4, 539–551.

Misra, B., and Sudarshan, E.C.G. (1977). The Zeno’s paradox in quantum theory.
Journal of Mathematical Physics 18, 756–763.

Horlitz, K.L., and O’Leary A. (1993). Satiation or availability? Effects of atten-
tion, memory, and imagery on the perception of ambiguous figures. Percept.
Psychophys 53, 668–681.

Orbach, J., Ehrlich, D., and Heath, H. (1963). Reversibility of the Necker cube: I.
An examination of the concept of “satiation of orientation”. Percept. Mot. Skills
17, 439–458.

Orbach, J., Zucker, E., and Olson, R. (1966). Reversibility of the Necker cube:
VII. Reversal rate as a function of figure-on and figure-off durations. Per-
cept. Mot. Skills 22, 615–618.
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